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Abstract. Given a pair of finite disjoint sets A and B in Rn, a fundamental problem with many
important applications is to efficiently determine a hyperplane H(w; �) which separates these sets
when they are separable, or ‘nearly’ separates them when they are not. We seek a hyperplane which
minimizes a natural error measure in the latter case, and so will ‘surgically’ separate the sets. When
the sets are separable in a strong sense, we show that the problem is a convex program with a
unique solution, which has been investigated by others. Using the KKT conditions, we improve on
an existing algorithm. When the sets are not separable, the problem is nonconvex, generally with
proper local solutions, and we solve an equivalent problem by Branch and Bound. Numerical results
are presented.
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1. Introduction and Preview

The terms ‘discriminant analysis’, ‘pattern classification’, and ‘separation of sets’
are different expressions describing the common and practically important problem
of partitioning Rn into t subsets, based on a given set of data points composed of
t types of data. The applications include: medical diagnosis, scoring of credit card
applications, biological specimen classification, digit and handprinted character
recognition, and identification of tax returns for audit.

The general problem is simple to describe. We are given a finite set D of data
points (vectors in Rn), with each data point belonging to exactly one of t types
Dj . Based on this given set D = D1 [D2 [ � � � [Dt, we wish to associate any
point in Rn with one of the t types. There are two quite different approaches to this
problem, ‘parametric’ and ‘non-parametric’ where the former applies to methods
wherein one assumes that the points of D are outcomes of random experiments
whose underlying random variables are of a certain type with parameters to be
estimated from D. We are interested in non-parametric approaches wherein no
such statistical assumptions are made.

We thus seek to partitionRn into t subsetsS1; S2; . . . ; St (soS1[S2[� � �[St =
Rn, and intSi\intSj = ; for all i 6= j). In this manner, we can associate any point
in Rn with one of the subsets Si (ties are not addressed here, it is assumed that they
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434 JAMES E. FALK AND EMMA LOPEZ-CARDONA

can be broken according to some unambiguous rule) and thus ‘classify’ all points.
A simple (but potentially computationally expensive) scheme is to associate each
point with the type of its closest Euclidean neighbor. In this way, Rn is partitioned
into as many ‘cells’ as there are points inD — this is the so-called Voronoi Partition
(see, e.g., Preparata [21], and we set Sj equal to the union of all cells of all points
in Dj).

In this paper we address the most basic problem of separating two finite disjoint
sets of pointsA andB. With some abuse of notation, we will use the same symbols
to denote matrices whose rows are the points of A and B. Let jAj = p and jBj = q,
so that A is p by n and B is q by n. We are interested in linearly separating A and
B whenever possible, i.e., we are interested in efficiently determining a hyperplane
H(w; ) (so that w 6= 0) for which Aiw �  for i = 1; 2; . . . ; p and Bjw � 

for j = 1; 2; . . . q when possible, or minimizing an error function when no such
hyperplane exists.

There are a number of reasons why we limit our attention to the two-set sepa-
ration problem, and among them are:
� the multi-set problem can be solved by solving a sequence of two-set separation

problems (e.g., see [24]),
� two (or more) disjoint sets can be completely separated by solving a sequence

of linear separating problems (e.g., see [15]), and
� the two set linear separation problem has interest in its own right.
To illustrate the latter point, we briefly describe an application of the two-set

separation problem to the detection of breast cancer (see [16] and [17] for a complete
description of the model). We discuss the accuracy of our model on this data set in
Section 7. Here the databaseD consists of 683 points (535 in an early study), each
a vector in Euclidean nine-space, R9: Each vector corresponds to a tissue sample
– fine needle aspirate (FNA) of human breast tissue taken from a specific patient.
Each of the nine components of the vector corresponds to a specific attribute of the
sample?. The numbers in each component are integers ranging from 1 to 10, and
represent a pathologist’s judgement as to the degree that the given sample displays
this attribute. A sample point is classified into set A (or set B) depending on the
presence (or absence) of cancer in that sample. In the aforementioned database,
239 of the 683 samples were cancerous.

When a new patient’s sample - say P - is evaluated, the problem is to associate
it with one of the two sets A or B. In the event that these sets are separable by
a hyperplane H(w; ), we then would associate it with the set A if P � w � ;

and with the set B otherwise. In the event that the sample is classified with the
malignant set, the patient would undergo a biopsy, otherwise a re-examination
would be recommended to confirm the diagnosis. When A and B are not linearly
separable, a possible approach is to construct a piecewise linear separator by

? The nine attributes are: clump thickness, uniformity of cell size, uniformity of cell shape,
marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and
mitosis.

jogo296.tex; 20/11/1997; 15:02; v.7; p.2



THE SURGICAL SEPARATION OF SETS 435

enclosing the ambiguous points in a band (a pair of parallel hyperplanes) according
to some rule, eliminate the correctly classified points, then try to linearly separate
the remaining ambiguous points. Several applications of this procedure might be
needed to completely separate A and B — Mangasarian [15] describes a simple
way of accomplishing this.

We now preview the contents of this paper. In the next section, we define weak
and strong separation, and motivate and define the basic optimization model to be
solved. In the same section we mention some of the previous models and work
which has been done.

In Section 3 we relate the optimal value of the basic optimization problem and
the nature of the level sets of its objective function to the nature of the separability
of the sets A and B. The nature of this separability can be identified by solving a
linear program. When the sets are separable, the basic optimization problem is a
convex program, otherwise it is nonconvex.

Sections 4 and 5 contain algorithms for solving the basic optimization prob-
lem, with Section 4 concentrating on the strongly separable case, and Section 5
concentrating on the weakly separable and the nonseparable cases. The algorithm
offered for the strongly separable case of Section 4 is an enhanced version of a
cutting plane method originally proposed by Cavalier, Ignizio and Soyster [3]. A
method to solve the nonconvex problem corresponding to the nonseparable case is
described in Section 5. To set up the method, a sequence of 2 � n linear programs
must first be solved. If any of these problems is unbounded, the sets A and B are
identified as being weakly separable, and a separating hyperplane is determined.

In Section 6 we describe some numerical experience that we have had with
the method on a set of randomly generated problems. In Section 7, we apply the
algorithm to the Breast Cancer Data described above in order to test the accuracy
of the model’s hyperplane on a set of actual data.

With the exception of using the same symbol (A and B) to denote both a set of
vectors and a matrix whose rows and columns are the vectors, the notation used
herein is standard. We will often use the symbol e (with no subscript) to denote a
column vector of ones, with the number of rows determined by the context, so that
when we write A �w �  � e we know that e has p rows, whereas in the inequalities
B � w �  � e, the vector e has q rows.

2. The Basic Optimization Model

We have assumed that the sets A and B are disjoint. Following Marlow [19], we
say that these sets are separable if there is some hyperplane H(w; ) such that

Ai � w �  for all i = 1; . . . p and Bj � w �  for all j = 1; . . . ; q

where we can assume that kwk = 1 (H(0; ) is not a hyperplane andH(kw; k) is
the same hyperplane as H(w; ) for any k > 0.) If the sets are separable and there
is a hyperplane that satisfies these inequalities in a strict sense, we say that these
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sets are strongly separable, otherwise we say that the sets are weakly separable?.
If no hyperplane exists that satisfies the above inequalities, the sets are simply not
separable.

Note that a given pair of setsA andB satisfies exactly one of the three relations:
they are either strongly separable, weakly separable, or not separable. Note also that
whenA andB are strongly separable there are an infinite number of distinct hyper-
planes which separate them. If A and B are weakly separable, there may or may
not be an infinity of separating hyperplanes (e.g., if A = f(�1; 0); (0; 1); (1; 0)g
andB = f(0; 0)g in R2, the only separating hyperplane is w = (0; 1);  = 0, but if
A and B are considered to be subsets of the plane x3 = 0 in R3, there is an infinite
number of separating hyperplanes.)

When A and B are strongly separable, we are interested in finding a hyper-
plane which ‘robustly’ separates the sets (in which case we say that A and B are
‘surgically’ separated.) While any separating hyperplane will separate A and B,
we imagine that these sets are simply finite representatives of larger sets Â and B̂
which are in fact the sets which we want to separate. If Â and B̂ are fairly close
to A and B in size then the hyperplane which our model predicts is likely to also
separate Â and B̂:

We also would like the separating hyperplane to be invariant under transforma-
tions that preserve congruence, i.e., if A and B undergo a transformation T which
is a translation, reflection, rotation, scaling, or combination of these, then we would
like our model to chose the hyperplane T (H) separating T (A) and T (B) when our
model would choose H separating A and B: Indeed, if one simply interchanges
the labels A and B, our model will choose the hyperplane (�w;�).

A final property of the model which we address is that it produces a unique
hyperplane when the sets A and B are strongly separable. This has the pleasant
implication that the hyperplane predicted by the model does not depend on the
software used to solve the model.

When A and B are weakly separable, we are content to produce any weakly
separating hyperplane in the event that a multiplicity of separating hyperplanes
exists.

Finally, when A and B are not separable we want to produce a hyperplane
which ‘comes as close as possible’ to separatingA and B, i.e., a hyperplane which
minimizes some measure of the ‘error’ associated with the attempted separation.

A number of authors have studied the problem of using linear or nonlinear
programming to find hyperplanes which separate, or ‘nearly separate’, given sets
A and B. One of the earliest papers, due to Mangasarian [15] formulated a linear
programming model quite similar to the one which we address, but used the L1
norm on the weight vector w, and so produced a hyperplane for the strongly

? This convention is not universally accepted, especially among papers dealing with pattern
recognition (e.g. [15]) where the concepts of ‘strong separablility’ and ‘separability’ are considered
interchangeable and weak separability is not addressed. The reason for this is probably that in most
applications, the sets are either strongly separable or they are not separable.
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separable case which is not invariant under rotations. In fact, his solution will be
the first LP solution of a sequence of LP solutions which our model will produce.

In the same year, Rosen [22] pointed out that the problem of identifying a
separating hyperplane for the strongly separable case can be formulated as the
convex quadratic problem of minimizing the distance between the convex hulls
C(A) and C(B) of the sets A and B. Let xA 2 C(A) and xB 2 C(B) so that the
segment [xA; xB ] ‘connects’C(A) and C(B): If the length of [xA; xB ] is minimal
over all such connecting line segments, then the hyperplane bisecting [xA; xB ]
with normal (xA � xB)= kxA � xBk is, in fact, the hyperplane which we will
produce via sequential linear programming when A and B are strongly separable.
A disadvantage of this approach is that no useful information is available from the
solution of the quadratic program when A and B are not strongly separable.

Another early effort is due to Smith [23] who formulated a linear program whose
objective is to minimize a measure of the distance of the points to the hyperplane.
This model did indeed provide a separating hyperplane for the strongly separable
case, but did not yield any useful information for the other cases. The method
was later generalized by Bennett and Mangasarian [1] who modified the objective
function by including weights which not only provided a separating hyperplane for
the strongly separable case, but also provided a hyperplane minimizing an average
error measure for the non-separable case. Neither of these methods produce a
hyperplane invariant under conguence preserving transformations.

During the ’80’s and early ’90’s, an entire sequence of papers by and/or refer-
encing Freed and Glover ([5–12]) appeared in the journal Decision Sciences. All
of this work is essentially independent of the aforementioned references, and is
directed at establishing linear programming models whose solutions will separate
(or nearly separate) a pair of sets A and B. Some of the models only work under
special conditions, and some are not invariant under all congruence preserving
transformations.

The model that we will address was most recently considered by Cavalier et
al, [3], who suggested a heuristic method for its solution in the strongly separable
case. We will now motivate this model from several different perspectives. Let
H(w; ) be any hyperplane, and p be any point in Rn. The Euclidean distance
between p andH(w; ) is jz � w � j = kwk or simply jz � w � j if kwk = 1. Now
ifH(w; ) separates the setsA andB, then the closest point inA[B is of distance
equal to the minimum of the non-negative numbers Aiw �  (i = 1; :::; p) and
 � Bjw (j = 1; :::; q): In the strongly separable case, we wish to maximize this
quantity, i.e., we wish to solve Problem P:

max
kwk=1;

min
i=1;...;p
j=1;...;q

fAiw � ;  �Bjwg (1)

Note that this problem has a piecewise linear and concave objective function, but
is a non-convex program by virtue of the constraint kwk = 1: In this formulation,
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438 JAMES E. FALK AND EMMA LOPEZ-CARDONA

we are seeking a separating hyperplane which maximizes the minimum distance
between it and the data points.

Because we are using Euclidean distance as a measure here, our solution will
be invariant under transformations which preserve distance.

Before addressing other interpretations of the model, it is convenient to eliminate
 from Problem P. For any given weight vectorw, it is easy to see that the  which
minimizes the above objective function is

 =

�
1
2

��
min

i=1;...;p
fAiwg+ max

j=1;...;q
fBjwg

�
(2)

and, eliminating  from the objective function of Problem P, we obtain the new
version

Find V � =

�
1
2

�
max
kwk=1

�
min

i=1;...;p
fAiwg � max

j=1;...;q
fBjwg

�
: (3)

In this form it is clear that Problem P must have a solution.
We now consider a slightly different way of interpreting Problem P. LetH(w; )

be any separating hyperplane, and let

s = min
i=1;...;p

fAiwg

t = max
j=1;...;q

fBjwg:

Because the hyperplane separates A and B, t �  � s, and the quantity (s� ) is
the distance of the closest point in A to H , and (� t) is the distance of the closest
point in B to H . The set B(H) = fx 2 Rn : t � xw � sg is a ‘band’ of width
s� t, whose interior contains no points of either set A or B. Lambert [13] refers
to B(H) as the ‘dead zone’. Problem P seeks to find a hyperplane whose dead
zone is of maximal width. Figure 1 shows two strongly separated sets, a separating
hyperplane, and the dead zone. Note that the hyperplane shown does not produce
the maximal dead zone.

As a final interpretation of Problem P, consider the related problem:

min
x2C(A);y2C(B)

kx� yk

where C(A) and C(B) are the convex hulls of the sets A and B respectively. Here
we are seeking a line segment [x�; y�] of minimallength joining the convex hulls
of the sets A and B. This is the problem addressed by Rosen, [22]. It turns out that
there is an intimate relationship between a solution of this problem, and a solution
of Problem P, which we will summarize in the following statement. We will not
include a proof here but one can be realized by comparing the KKT conditions for
the above problem with a problem equivalent to Problem P (one based on duality
theory can be found in [14].)
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Figure 1. A dead zone for two strongly separable sets.

THEOREM 1. Assume the sets A and B are strongly separable, and let (x�; y�)
denote a solution to the above problem. Then the hyperplane H(w; ) with w =

(x�� y�)= kx� � y�kand  =
�
1=2

�
� (kx�k2 �ky�k2) is a solution to Problem P.

In connection with this last interpretation of Problem P, note that:
� The above problem must have a solution, and
� The solution of the above problem might not be unique (e.g., let A =
f(0; 0); (1; 0)g and B = f(0; 1); (1; 1)g in R2:

� When A and B are weakly separable, a solution of the above problem offers
no separating hyperplane since in this case x� = y�, so that w = 0.

We now turn to the case where the setsA andB are not linearly separable. In this
case, for any hyperplane H(w; ), at least one of the numbers (Aiw � ) or ( �
Bjw) must be negative, with the most negative values corresponding to the worst
misclassified points. If we choose to seek a hyperplane whose worst misclassified
points are as near as possible to being correctly classified (as measured by the
Euclidean norm), we are led to maximize the smallest of the above numbers, i.e.,
we again seek a solution to Problem P.

As above, let

s = min
i=1;...;p

fAiwg

t = max
j=1;...;q

fBjwg:

so thatAw � s � e and Bw � t � e. Since we are assuming that the sets A and B are
not separable, s < t; for otherwise with w given, there is some value of � 2 [t; s]
such that the hyperplaneH(w; �) separatesA andB. Note that all points ofA such
that Aiw � t � e are correctly classified, and all points of B such that Bjw � s � e
are correctly classified by any hyperplaneH(w; ) where s �  � t. However, the
band of points B(H) = fx : s � xw � tg contains both points in A and points of
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Figure 2. An ambiguous strip for two nonseparable sets.

B, and is the narrowest band of such points for the given weight vector w, with a
width of (t� s). Lambert [13] refers to this as the ‘negative dead zone’ but we will
refer to it as the ‘ambiguous zone’. Figure 2 exhibits it for a pair of non-separable
sets. Note that the ambiguous zone shown is not minimal. We seek to determine
w (and the corresponding  via equation (2.2)) which minimizes the width of the
ambiguous zone, i.e., one which maximizes (s� t). Thus again we are led to seek
a solution of Problem P.

3. The Separability State of the Sets A and B

From the preceding section, we see that in all cases we are led to seek a solution
of Problem P. Note that the objective function of Problem P measures:
� the width of the dead zone when the sets A and B are separable, and
� the negative of the width of the ambiguous zone when the sets are not separable.
We can summarize this as follows:

THEOREM 2. The optimal value V � of Problem P is:

� positive if and only if the sets A and B are strongly separable,
� zero if and only if the sets A and B are weakly separable, and
� negative if and only if the sets A and B are not separable.
We now look at a geometric interpretation of Problem P.
Let

F (w) = min
i=1;...;p

fAiwg � max
j=1;...;q

fBjwg (4)

which is just the objective function of Problem P, ignoring the constant (1/2).
Note that F is piecewise linear and concave, and that F (0) = 0: Note also that
F (�w) = �F (w) whenever � � 0: The level sets

L(F ;�) = fw : F (w) � �g

jogo296.tex; 20/11/1997; 15:02; v.7; p.8



THE SURGICAL SEPARATION OF SETS 441

are convex polyhedra and contain the origin w = 0 when � is non-positive. Now
when the sets A and B are separable, V � � 0, there is some feasible point w� such
that F (w�) � 0; which implies that F (�w�) � 0 for all � � 0. This means that the
level set L(F ; 0) is unbounded, which in turn implies that all non-empty level sets
L(F ;�) are unbounded (see, e.g., Panik [20]). When the sets A and B are weakly
separable, the highest value of F over the feasible region kwk = 1 is zero, so that,
while L(F ; 0) is non-empty and unbounded, all of the level setsL(F ;�) are empty
for � > 0.

On the other hand, when the sets A and B are not separable, the highest value
of F over the feasible region is negative. In this case, the level set L(F ; 0) = f0g,
which implies that all non-empty level sets of F are bounded. We summarize this
information in the following theorem, and exhibit the three cases in Figure 3.

THEOREM 3. The setsA andB are separable if and only ifL(F ; 0) is unbounded.
In this case, the sets A and B are:

� strongly separable if and only if L(F ;�) is non-empty for all � > 0.
� weakly separable if and only if L(F ;�) is empty for some � > 0.
These figures also suggest other facts about the strongly separable case.

THEOREM 4. When the sets A and B are strongly separable, the solution of
Problem P is equivalent to the convex program which results by replacing the
constraint kwk = 1 by the constraint kwk � 1:

Proof. The maximum value ofF over kwk = 1 is positive, so that the maximum
value of F over kwk � 1 is positive. The solution of the latter problem cannot
occur at an interior point, because F (�w) = �F (w) whenever � � 0. 2

THEOREM 5. When the sets A and B are strongly separable, the solution of
Problem P is unique.

Proof. Assume the opposite and pick two optimal points to Problem P. The
optimal value of F is positive. The midpoint on the line segment joining the
points gives F at least as high a value as the two points give to F , and because
F (�w) = �F (w) whenever � � 0, one gets a higher value over kwk = 1 than the
assumed solution value. 2

In the weakly separable case, F is maximized over kwk = 1 at some point
which gives a zero value to F , as does w = 0. Thus the counterpart of Theorem 4
above is also true for this case, but there are multiple points (at least an entire line
segment) where F (w) = F (0) = 0:

THEOREM 6. When the sets A and B are weakly separable, the solution of Prob-
lem P is equivalent to the convex program which results by replacing the constraint
kwk = 1 by the constraint kwk � 1: In this case, the origin w = 0 is a solution as
well as at least one point on the boundary of this constraint.
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Figure 3. Level sets ofF . (a): Unbounded level sets,A andB strongly separable; (b): bounded
level sets A and B nonseparable; (c): unbounded level sets, A and B weakly separable.
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Finally, in the non-separable case (when the level sets of F are bounded and
L(F; 0) = f0g); geometrically we are seeking a level set with a value as high as
possible, which still intersects with the constraint kwk = 1: While the following
theorem is computationally useless, it emphasizes the difficult nature of Problem
P in the non-separable case.

THEOREM 7. When the setsA andB are not separable, the solution of Problem P
is equivalent to the non-convex program which results by replacing the constraint
kwk = 1 by the constraint kwk � 1:

Indeed, in this case, the unconstrained maximization of F over Rn is zero at
w = 0.

To summarize, when the sets A and B are separable, a convex program can be
solved to locate a solution, but in the weakly separable case one must be careful to
select one of the multiple solutions on the boundary of the constraint region. In the
non-separable case, we are forced to solve a non-convex program. Algorithms for
these cases will be suggested in the next two sections. We conclude this section by
identifying a linear program whose solution will reveal the nature of the separability
of the sets A and B . It is the same LP that Mangasarian [15] had used earlier to
produce a separating hyperplane in the strongly separable case.

First we note that the set B = fw : �1 � wk � 1 (k = 1; . . . ; n)g contains
the set S = fw : kwk � 1g: If the sets A and B are strongly separable, the
maximum of F over S and the maximum of F over B are both positive. Likewise
if F is constantly zero over some ray emanating from w = 0 (the weakly separable
case), the maximum of F over both B and S will be zero, with some point on the
boundary of B giving a value of zero to F . Finally, if the sets A and B are not
separable, F is maximized over both B and S at w = 0, and this is the unique
maximizer of F .

Thus to determine the separability status of the sets A and B, we are led to seek
the solution of the Problem P+ :

Find V + =

�
1
2

�
max

kwk
1
=1

�
min

i=1;...;p
fAiwg � max

j=1;...;q
fBjwg

�
: (5)

which is equivalent to the linear program Problem P+ :

Find V + =

�
max s� t

s:t: s � e � Aw; t � e � Bw; �e � w � e
:

Note that the counterpart of Theorem 2, with P+ replacing P and V + replacing
V � holds.

In the strongly separable case, the solution of this problem has a usefulness
beyond the determination of the separability status of the sets A and B, as it is
the first of a sequence of LP’s whose solutions will ultimately yield the solution of
Problem P.
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4. An Algorithm for Solving Problem P - Strongly Separable Case

When the sets A and B are determined to be strongly separable (because the
solution value V + of Problem P+ is positive), we resort to Theorem 4 and seek
the unique solution of the convex program:

Problem Pvex : Find V � = (1=2) � max
kwk�1

f min
i=1;...;p

fAiwg � max
j=1;...;q

fBjwgg

(6)

which is equivalent to the problem:

Problem Pvex : Find 2V � =

�
max s� t

s:t: s � e � Aw; t � e � Bw; kwk � 1
�

(7)

This convex program had been previously addressed by Cavalier et al [3] who had
suggested the following cutting plane method to handle the non-linear constraint
kwk � 1 :

0) initialize: set k = 0, and solve Problem Pvex with the constraint kwk � 1
relaxed to the linear constraints S0 = fw : �e � w � eg. Note that this is
precisely the Problem P+ which was solved to determine the separability status of
the sets A and B. Let w0 denote a solution of this problem.

k) check for optimality: with wk 2 Sk given, compute
wk

 : This will be �
1. If it is equal to one, wk is feasible to Problem P and we are done. Otherwise set
Sk+1 = Sk [ fw : w � (wk=

wk
) � 1g (i.e., add the ‘cut’ w � (wk=

wk
) � 1)

and solve Problem Pk+1 with this new feasible region, and continue to iterate with
k = k + 1.

This is a standard cutting plane procedure, with the cuts w � (wk=
wk

) � 1

continually added as needed to iteratively shave the initial box S0 towards the
desired feasible region of Problem P. Cavalier et al. [3] present the method as a
‘heuristic’ but, in fact, it can be shown to converge (in the strongly separable case)
to the unique solution (see, [2]). Convergence, however, might not be finite. Figure
4 exhibits the level sets ofF for the example whenA = f(3; 2)g andB = f(1; 1)g.
In this example, the points wk alternate among newly created vertices of the sets
Sk, and approach the optimal solution w� = (2=

p
5; 1=

p
5) � = 13=(2

p
5) only

in the limit.
We are thus motivated to seek an enhancement to this basic cutting plane algo-

rithm. To that end, we note that the Karush-Kuhn-Tucker conditions for Problem
P (now ignoring the constant (1/2) in the objective function) are:

�A� �B = 2�w �e = 1 �e = 1
� � 0 Aw � se � 0 �(Aw � se) = 0
� � 0 Bw � te � 0 �(Bw � te) = 0
� � 0 kwk2 � 1 v(kwk2 � 1) = 0

: (8)
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Figure 4. Level sets and cuts for the example. (a): Level sets; (b): two cuts for the example.

There are 12 expressions in Relations (8), arranged in the form of a 4 by 3 matrix.
We will use the convention that expression (i; j) is the expression in row i, column
j of Relations (8).

In the strongly separable case, no convex combination of the rows of A can
equal a convex combination of the rows of B. From expressions (1; 1) and (4; 1)
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of Relations (8), we conclude that � > 0: This then, with expression (4; 3) implies
that kwk2 = 1: Also we know that s� t > 0 in the strongly separable case.

Rosen [22] had shown that generally at most n+ 1 of the constraints (2; 2) and
(3; 2) of Relations (8) are binding, i.e., at most n+ 1 of the constraints

Aiw � s � 0 (i = 1; :::; p) and Bjw � t � 0 (j = 1; . . . ; q)

occur as equalities at the optimal solution. In degenerate cases, one could have
more than n+ 1 of these constraints binding, and the example illustrated in Figure
4 has less than n + 1 constraints binding, but the usual case has exactly n + 1
binding constraints. Assume first that exactly n + 1 constraints are binding, and
denote the binding constraints with a subscript b, i.e., assume that

Abw � seb = 0 and Bbw � teb = 0 :

(As before, the notation eb denotes a vector of ones of appropriate size.) These
equations are homogenous so we can normalize a solution of them. Since we know
that s � _t > 0; we can assume that s � t = 1, and seek a solution of the matrix
system:0

@ Ab �eb 0
�Bb 0 eb

0 1 �1

1
A
0
@ w

s

t

1
A =

0
@ 0

0
1

1
A

representing n + 2 equations in the n + 2 unknowns w; s; t. If the system has no
solution, we can simply revert to the usual cutting plane method discussed above.
If this system has a solution (and it will if the matrix is non-singular), we can
test it for optimality. To do this, we first normalize w, update the values s and t

accordingly, and then determine the dual variables �; �; and �: This can be done in
the following way.

First multiply equation (1; 1) of Relations (8) by the normalized w and use
relations (1; 2); (1; 3); (2; 3) and (3; 3) to get s� t = 2�. which determines �. Now
rewrite equations (1; 1); (1; 2); and (1; 3) of Relations (8) in the matrix form

�
� � 0

�0@ Ab �eb 0
�Bb 0 eb

0 1 �1

1
A =

�
2�w �1 1

�

and note that the inverse of the matrix had been determined earlier. Thus all of
the relevant quantities have been determined, and the optimality conditions can be
checked. If they are satisfied, we are done. Else add the cut as before, and continue.

When there are fewer than n + 1 points of the sets A and B determining the
current trial solution, the solution of the system (8) is somewhat more complicated.
The equations (1; 1) in matrix form are

(� �)
�

Ab

�Bb

�
= 2�w
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(note that we are not distinguishing between row and column vectors with a
transpose, but by context, so here the vector w must be a row vector) where the
number of rows of the matrix is at most n. If the matrix has less than full row rank,
we revert to the normal cutting plane procedure. Otherwise, we can multiply on
the right by the matrix transposed, to get:

(� �)
�

Ab

�Bb

��
AT
b �BT

b

�
= 2�

�
wAT

b �wBT
b

�
:

Let

Â =

�
Ab

�Bb

��
AT
b �BT

b

�

and set �A =
�
Â
�
�1

so that the above equations, expressions (2,2) and (3,2) of
Relations (8) become

(� �) = 2� (seA � teB) �A (9)

where we are using the subscripts on the vectors e to indicate their size (i.e., eA
pertains to those constraints Aiw �  which are binding at the current solution
wk):

Now partition the matrix �A in conformance with the vectors eA and eB : Thus
we set

�A =

� �A11 �A12
�A21 �A22

�
; E =

�
eA 0
0 eB

�

and let�
c11 c12

c21 c22

�
= E

� �A11 �A12
�A21 �A22

�
ET :

Note that cij is simply the sum of all entries in the matrix �Aij and that cij = cji:

Now multiply Equation (9) on the right by the vector
�
eTA
0

�
and use the expression

(1,2) to get

1 = 2� (sc11 � tc12) :

Similarly, multiply Equation (9) on the right by the vector
�

0
eTB

�
and expression

(1,3) of Relation (8) to get

1 = 2� (sc12 � tc22) :

These last two equations imply that�
s

t

�
=

�
c12 � c22

c11 � c12

�
� (10)
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for some �:
At the same time, using the facts that kwk = 1; � > 0; expression (1,1) of

Relations (8) and Equation (9), we get the quadratic equation

s2c11 � 2stc12 + t2c22 = 1

which, in view of (10) above, reduces to a quadratic equation in �: While there
are generally two roots of this equation, we choose the one which gives the larger
value to the quantity s� t. With these values of s and t, we get � = (s� t)=2 and
through Equation (9), the vectors � and �. Finally, through expression (1,1), we
get w.

As before, if the KKT conditions are satisfied, we are done and otherwise we
resort to the standard cutting plane procedure.

The process is finite, as eventually wk must identify the correct binding con-
straints. As we will point out in Section 6, this enhancement dramatically improved
convergence on a set of randomly generated problems.

While each subproblem solved is an LP (and is therefore solvable in polynomial
time by any one of several interior point methods), we cannot claim that Problem
P is also polynomial solvable by our enhanced cutting plane method.

5. Algorithms for Solving Problem P – Weakly Separable and
Non-separable Cases

When the optimal value of Problem P+ is zero, we know that the sets A and B

are not strongly separable. Indeed, depending on the computer code used to solve
Problem P+, we may even know more. In the weakly separable case, the vector
w = 0 is a solution, as well as at least one point on the boundary of the constraints
�1 � wk � 1 (k = 1; . . . ; n): If the code happens to produce a solution point other
than w = 0, we know the sets are weakly separable and the normalized solution
produced is a solution to Problem P. This is not to be expected, however.

If the code indicates that the solution point w = 0 is unique, we know that
the sets are not separable. Some codes (such as GAUSS) offer the possibility of
producing other solutions when multiple optimal solutions are indicated. However,
we cannot depend on this for two reasons: a) many codes do not allow a user to
request an alternate solution if one exists, and b) even codes which do allow a
user to request an alternate solution are not necessarily reliable. The reason for the
latter is simple — the indication for multiple optimal solutions is a zero reduced
cost on a non-basic variable. That means the variable can be made basic without
changing the value of the objective function. However, in degenerate cases, such
a change in basis might not produce a different solution if the incoming variable
cannot be brought in at a positive value. This is especially true for our problem,
as the null solution will be exhibited by an entirely degenerate optimal tableau, so
that a pivot in any nonbasic column will only result in a change of basis and not in
a new optimal solution. Thus we need to look for a more reliable way of producing
alternate solutions if, indeed, any exist.
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To that end, assume V + = 0 and w = 0 are the optimal outputs of a computer
implementation of Problem P. Then either the sets A and B are weakly separable,
or they are not separable. But by Theorem 3, this is equivalent to determining if
the level sets L(F ;�) are unbounded for � � 0 or not. We can set � = �1, and
solve the 2n problems:

For k = 1; . . . ; n; solve:

Find uk =

�
max wk

s:t: F (w) � �1

Find lk =

�
min wk

s:t: F (w) � �1

or, equivalently, for k = 1; . . . ; n; solve the linear programs:

Find uk =

8>><
>>:

max wk

s:t: se � Aw

te � Bw

s� t � �1

Find lk =

8>><
>>:

min wk

s:t: se � Aw

te � Bw

s� t � �1

If any of these problems is unbounded, the sets A and B are weakly separable,
and a weakly separating hyperplane can be constructed by setting the unbounded
variable equal to an appropriate constant (e.g., +1 if wk =1 and -1 if lk = �1);
resolving P+ with the new constraints and setting s� t = 0.

If all of these problems are bounded, then we will have: a) determined that the
setsA and B are not separable, and b) constructed vectors u (of upper bounds) and
l (of lower bounds) such that fw : F (w) � �1g � fw : lk � wk � ukg. These
bounds are necessary to begin the solution of Problem P in the nonseparable case.

In the nonseparable case, we will need to solve a nonconvex program. We
intend to solve this by applying the Branch and Bound algorithm introduced by
Falk and Soland [4]. This procedure requires a separable objective function and
(for a practical implementation) linear constraints. As it stands, Problem P is not
of this form. However, the following result allows us to address an equivalent
problem. The result may be motivated by examining Figure 6, wherein it is clear
that finding the level set L(F ;�) with the highest value of � which intersects the
feasible region of Problem P defined by the equation kwk = 1; is equivalent to
finding the largest value of the function G(w) = kwk2 over some non-empty level
set of F , say L(F ;�1).
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Define

Problem Q:

(
max G(w) = kwk2

s:t: F (w) � �1

i.e.,

Problem Q:

8>>><
>>>:

max G(w) = kwk2

s:t: se � Aw

te � Bw

s� t � �1

Note that the feasible region here is known to be a nonempty bounded polyhedral
set contained within the hyper-rectangle defined by the vectors of lower and upper
bounds l and u.

THEOREM 8. Any solution of Problem Q, when normalized, is a solution of Prob-
lem P.

Proof. Problem Q involves the maximization of a continuous function over a
compact set, and so has a solution – let wq denote such a point (it need not be
unique). This point is not zero, as we have eliminated the weakly separable case.
Then its normalized pointwQ is feasible to Problem P. LetwP be a global solution
of Problem P. We know that F (wP ) < 0 because the sets are not separable.
Therefore,wP =(�F (wP ))

 = �1=(F (wP )), and

F (wP =(�F (wP )) = F (wP )=(�F (wP )) = �1

so that the point wP =(�F (wP )) is a nonzero feasible solution of Problem Q. 2

Since wq is a solution to Problem Q, F (wq) � �1 and so

kwqk �
wp=(�F (wP )


= 1=(�F (wP ))

> 0:

This implies that

kwqkF (wP ) � �1 (11)

At the same time, since wP is a solution to Problem P,

F (wP ) � F (wq= kwqk)
= F (wq)= kwqk
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from which we see that

kwqkF (wP ) � F (wq) (12)

� �1:

Taking (11) and (12) together, we get

kwqkF (wP ) = �1: (13)

Now if the normalized pointwq= kwqkwere not a solution of Problem P, we would
have F (wP ) > F (wq= kwqk) which implies kwqkF (wP ) > F (wq) � �1; in
contradiction to (11).

The objective function of Problem Q is separable, and the constraints define a
bounded linear polytope. Finite upper and lower boundsu and l describing a hyper-
rectangle enclosing the feasible region had been determined above, so that we can
now apply the Falk-Soland Algorithm [4]. This is a Branch and Bound method that
sets up and solves a finite sequence of linear programs whose solutions ultimately
will produce a global solutionw� to Problem P. We summarize the algorithm here.

Problem P 1 is defined as follows. For each term w2
k in the objective function,

we obtain its concave envelope h1
k(wk) over the interval [lk; uk]. This is easily

determined to be the linear function h1
k(wk) = (lk + uk) � wk � lkuk (see Figure

5). Then define

Problem P1:

8>><
>>:

max H1(w) =
Pn

k=1 h
1
k(wk)

s:t: se � Aw

te � Bw

s� t � �1:

Let w1 denote an optimal solution of this problem and let ub1 denote the optimal
value.

SinceH1(w) overestimates the objective function kwk2 of Problem Q over their
common feasible region, the number ub1 must be an upper bound on the optimal
value of Problem Q. Moreover, since w1 is feasible to Problem Q the number
lb1 =

w1
2

must server as a lower bound on the optimal value of Problem Q. In
the event that lb1 = ub1 we are done and w1 is globally optimal for Problem Q. In
general however, lb1 < ub1 and we must continue.

We start an ordered list call it ‘LIST’. The items on the list are solved linear
programs, ordered according to the optimal values of the LP’s with the largest
values at the top of the list. The feasible region of each problem on LIST contains
a potentially global solution of Problem Q. Initially the only problem on LIST is
Problem P1: Each problem P t on LIST is characterized by:
� an interval It consisting of lower and upper bounds on the variables wk,

where initially I1 = [l; u] - the lower and upper bounds determined at the
beginning of this section. The Problem Pt is similar to Problem P1 except that
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Figure 5. Convex envelope of W2
k.

the feasible region of P t includes the additional constraints w 2 It; and the
objective function of Problem Pt has the form

Ht(w) =
nX

k=1

htk(wk)

where each function htk is the concave envelope of w2
k taken over the interval

[ltk; u
t
k];

� the solution wt of Problem Pt;

� an upper bound ubt equal to the optimal value of the linear program Problem
Pt;and

� a lower bound lbt equal to
wt

2
:

All items on LIST will have lbt < ubt indicating that the feasible region of
Problem Pt does contain a feasible point with (original) objective function value
lbt =

wt
2, and may contain a feasible point with an objective function value as

high as ubt:
Along with LIST, there will be an ‘incumbent’ solution winc with an objective

function value valinc corresponding to the most promising of all solutions found
to date. Initially, winc = w1 and valinc = lb1: All items kept on LIST will have
ubt > valinc indicating that the feasible regions of the problems on LIST may
contain feasible points with higher values than the best one found so far.

The algorithm proceeds in stages, with stage one consisting of the solution of
Problem P1: With stage T complete, we set up stage T + 1 by selecting (and
removing from the list) the problem at the top of the list (the ‘parent problem’) –
call it Problem Pt - and creating two new problems (the ‘offspring problems’). The
parent problem has the largest objective function value of all problems still on the
list, and so corresponds to the ‘most promising’ problem on the list. To create the
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Figure 6. Level sets of F – Example.

offspring problems, we first determine a ‘branching variable’. Since lbt < ubt, we
must have�

wt
k

�2
< htk(w

t
k)

for at least one k: For the branching variable, we choose any index k(t) for which
this difference is maximal, and create the two offspring problems P t(1) and P t(2)

by modifying the defining intervals It(1) and It(2): Both of these intervals are the
same as the parent interval It except in the component k(t), where the interval
[lt
k(t)

; ut
k(t)

] of the parent is replaced by the interval [lt
k(t)

; wt
k(t)

] for the first offspring

problem, and by the interval [wt
k(t)

; ut
k(t)

] for the second offspring problem.
The objective functions of the offspring problems are modified in variable k(t)

only, by computing new concave envelopes over the new intervals. We then solve
the new problems (with the new intervals added to the constraints of the parent
problem) to obtain solutions wt(1) and wt(2) with new objective function values
ubt(1) and ubt(2) and new lower bounds lbt(1) and lbt(2) on the global optimal value
of the original objective function. Clearly

ubt � maxfubt(1); ubt(2)g:

We now update the incumbent solution if a more promising point has been
found, i.e., if

maxflbt(1); lbt(2)g > valinc:

If, in fact, the incumbent is modified, all problems currently on LIST with inferior
upper bounds (i.e., ubr � valinc) are now deleted from LIST as their feasible
regions cannot contain any points better than the current incumbent point.
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Figure 7. Branch and bound tree – Example.

In any event, we now consider adding the newly solved offspring problems
to LIST. In particular, Problem Pt(i) is added to LIST only if ubt(i) > valinc

(the feasible region of Problem Pt(i) may contain a point superior to the current
incumbent).

If LIST is now empty, we are done - the incumbent solution is the global solution
of Problem Q. Otherwise we continue as described earlier.

The process is finite (see Falk and Soland [4]). However, as it is basically a
non-convex problem apparantly requiring some variation of a Branch and Bound
approach, it is almost certainly NP-hard.

To illustrate the method, the following (badly) non-separable example was
constructed. The level sets of F are shown in Figure 6 and the Branch and Bound
Tree is exhibited in Figure 7. Note that the optimal solution is actually found as
the solution of Problem P1 but not recognized as such until after eleven LP’s are
solved. Note that there are proper local solutions in this example.
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Example 1:

A =

0
BBBB@

0:5 1:5
3:5 �1:0
5:0 1:0
2:0 1:0
0:0 6:0

1
CCCCA and B =

0
@ 4:0 2:2

0:0 1:0
4:0 �2:0

1
A :

6. Computational Results

The algorithms described in Section 4 and 5 were implemented using GAUSS,
the linear programming package provided therein, and ran on a 486/33N personal
computer. Two types of computational results are presented, one randomly gener-
ated and the other taken from an established database. In this section we address
the randomly generated problems.

To test the efficiency of the methodology for the strongly separable case, we
first generated a random hyperplane H(w; ) in Rn, and a random m by n matrix
M (the integers m and n are inputs of the user). All random numbers were realized
by a random number generator from a uniform distribution over [0,1). The matrix
M was then devided into two matrices A and B where the rows Ai of A are those
rows of M that satisfy Aiw � : In the (unlikely) event that A or B had no rows,
we would have disregarded the data, but this never happened.

To evaluate the performance of the algorithm, we generated 50 problems for
each of 32 (m;n) pairs. Each problem had n variables, and the same total number
m (= p+q) of points. For each problem, we counted the number of linear programs
solved with and without the KKT enhancement, and recorded the average number
of LP’s solved. A tolerance of 10�6 between successive iterates wk was used as a
convergence criterion for the unenhanced version. We increased n in increments
of 3 from 3 to 12, and m in increments of 5 and 10 from 5 points to 50 points. The
results are tabulated in Table I.

The top entry in each cell corresponds to the average number of LP’s required
for the unenhanced version, and the bottom entry corresponds to the enhanced
version. The case n = 12 and m = 5 is not displayed for the unenhanced version
as it was requiring an excessive amount of computing time. Indeed the averages
for the case n = 9;m = 5 is only based on 15 problems for the same reason.

We note the following from Table I:
� For a fixed dimension n, problems with a low number of points were somewhat

harder to solve. This is probably because fewer than n+ 1 points were deter-
mining the separating hyperplane, resulting in a number of poor predictions
of binding constraints by the trial iterates wk:

� The KKT enhancement generally cut down the total number of required LP’s
by at least a factor of 3, and as much as a factor of 41. The most dramatic
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Table I. Average No. LP’s Required, Without and With Enhancement

nn(p+q) 5 10 15 20 25 30 40 50

3 11:22
1:42

5:58
1:32

4:08
1:16

3:56
1:08

3:54
1:14

3:82
1:12

3:12
1:00

3:02
1:02

6 37:30
2:32

17:42
3:42

10:44
2:42

7:90
1:98

5:86
1:56

5:20
1:66

4:54
1:32

4:12
1:24

9 99:20
2:40

47:50
6:12

28:68
5:32

16:70
4:04

12:94
3:36

8:90
2:68

7:56
2:22

5:44
1:92

12 2:26
95:10
5:86

52:20
7:74

35:74
7:62

26:48
6:42

18:92
5:48

12:16
4:04

9:04
2:98

Table II. Ratio of Entries of Table I

nn(p+q) 5 10 15 20 25 30 40 50

3 7.90 4.23 3.52 3.30 3.10 3.41 3.12 2.96
6 16.08 5.09 4.31 3.99 3.76 3.13 3.44 3.32
9 41.33 7.76 5.39 4.13 3.85 3.32 3.40 2.83

12 16.23 6.74 4.69 4.12 3.45 3.01 3.03

improvements were found where there were relatively few points and a rela-
tively high dimension. The effect of the enhancement generally decreased as
m = p + q increased for fixed n. Indeed, the ratios of the average number
of LP’s required for the two versions seemed to be decreasing to something
below 3.0, prompting the question (posed by an astute referee) as to whether
there is a limit greater than 1. Table II exhibits these ratios.

� For a fixed dimension n, the average number of LP’s needed to solve the
examples generally decreased as the number of points increased, both for the
enhanced and the unenhanced versions. This is probably due to the fact that
more data points would generally guarantee that exactly n + 1 points would
determine the optimum.

The behavior of the algorithm for the nonseparable case is more difficult to
evaluate as Branch and Bound is an implicit enumeration method and one would
expect wide variations of results for randomly generated problems of the same
size. We would, however, expect that the method would perform well on problems
which were ‘nearly’ separable and also that the width of the ambiguous strip would
decrease as the degree of inseparability decreased. To test these conjectures, we
took a pair of nonseparable sets and gradually ‘separated’ them by adding constant
increments to one of the sets until the translated set separated from the other.
Consider the example of Section 5 (Example 2).
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Figure 8. Nonseparable A and B, and four translations of A.

Example 2:

A =

0
BBBB@

0:5 1:5
3:5 �1:0
5:0 1:0
2:0 1:0
0:0 6:0

1
CCCCA and B =

0
@ 4:0 2:2

0:0 1:0
4:0 �2:0

1
A :

The solution of this problem took 11 problems (6 stages) as is illustrated in
Figure 7. The example is badly nonseparable as indicated in Figure 8a.

Now begin to increase each entry of A by multiples of 0.5. This amounts
to shifting the set A to the northeast direction. Eventually the shifted A will be
separated from B. Figure 8 exhibits this shifting. As expected, both the number of
LP’s required, as well as the width of the ambiguous strip eventually decreased as
A and B tended more to separate, with the former decreasing from 11 to 3 to 1
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and 1, and the latter decreasing from 2.7784 to 2.0742 to 1.3700 to 0.6658 before
becoming separable.

In the next example we generated two matrices A and B (again from U(0,1))
of 10 rows and 4 columns each, and increased the entries of A successively in
increments of 0.1. The actual matrices generated were:

A =

0
BBBBBBBBBBBBBBB@

:77416 :57563 :88177 :26804
:78414 :48796 :97274 :28300
:60458 :44884 :34724 :60052
:01751 :08588 :55000 :84631
:40625 :54202 :66676 :48591
:83884 :96729 :83151 :05376
:84716 :93729 :83446 :50611
:10919 :73131 :89678 :04628
:89560 :18773 :22152 :06302
:99138 :63610 :48169 :16690

1
CCCCCCCCCCCCCCCA

and

B =

0
BBBBBBBBBBBBBBB@

:44535 :89996 :81787 :61715
:23264 :58236 :74107 :31872
:41808 :33384 :32166 :76504
:35443 :48940 :51111 :24722
:00331 :77013 :91097 :40096
:43340 :26992 :41054 :79773
:79571 :28602 :86998 :87883
:85539 :31589 :60069 :26846
:56903 :24379 :77924 :89591
:44381 :19153 :45194 :62555

1
CCCCCCCCCCCCCCCA

For the matrix A with a translation of 0.1, the method took 75 LP’s with an
ambiguous strip of 0.33926. With a translation of 0.2, it took 15 LP’s, with an
ambiguous strip of 0.22822. With a translation of 0.3 it took 3 LP’s with an
ambiguous strip of 0.04054. With a translation of 0.4, the sets became strongly
separable. Figure 9 is a graph of the number of LP’s required as plotted vs. the size
of the ambiguous strip for the same example with smaller increments of 0.05.

In all of these examples, as with others that we ran, it is clear that the Branch
and Bound Algorithm is most effective when the sets A and B are close to being
separable. What is not exhibited (but not surprising either) is that the method
generally found the correct hyperplane in the first subproblem P 1, with the other
LP’s required to confirm global optimality.

7. The Wisconsin Breast Cancer Database

The previous section addressed random problems of small and moderate size in
order to get some idea of the amount of extra work (in terms of number of LP’s)
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Figure 9. Effect of Translations on A.

Table III. Description of the Wisconsin Breast Cancer Database

Group # of Points # Benign # Malignant Separable? Date entered

1 353 188 165 no 01/89
2 69 56 13 strong 10/89
3 31 22 9 strong 02/90
4 17 14 3 strong 04/90
5 48 36 12 strong 08/90
6 49 40 9 strong 01/91
7 31 17 14 strong 06/91
8 85 71 14 strong 11/91
3,4,5 96 72 24 strong 1990
6,7,8 165 128 37 strong 1991
3,4,5,6,7,8 261 200 61 strong 90-91
2,3,4,5,6,7,8 330 256 74 no 89-91

that is required to solve the model. In this section, we focus on a ‘real world’ set of
data in order to get some idea of the accuracy of the model. We choose to use the
Wisconsin Breast Cancer Database [17] which is available through the internet at
http://www.ics.uci.edu/AI/ML/MLDBRepository.html.

The data in the Wisconsin Breast Cancer Database was added sequentially, and
it is convenient to refer to the group number corresponding to when it was added.
Each data point consisted of 9 attributes and each component is an integer between
1 and 10.

We are interested in seeing how well the hyperplanes generated by our model
would do on this data set. While the criterion driving the models addressed herein
attempts to maximize the width of the dead zone in the separable case, and minimize
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Table IV. Prediction Accuracy with the Wisconsin Breast Cancer Database

Training Group/# points # LP’s Testing Group/# points Accuracy

100 distinct points of Group 1 / 100 151 f1,2,...,8g˜Training Set / 583 93.96%
2,3,4,5,6,7,8 / 330 195 1 / 353 91.22%
3,4,5 / 96 1 6,7,8 / 165 97.58%
3,4,5 / 96 1 6 / 49 95.92%
3,4,5,6 / 145 1 7 / 31 100%
3,4,5,6,7 / 176 3 8 / 85 97.65%
2,3,4,5 / 165 4 6 / 49 95.92%
6,7,8 / 165 12 1,2,3,4,5 / 518 94.79%
2,3,4,5 / 165 4 6,7,8 / 165 96.97%
3,4,5 / 96 1 1,2 / 422 94.76%

the width of the ambiguous strip in the non-separable case, we can, nevertheless,
measure the ‘efficiency’ of our method by computing the percentage of correctly
classified points. It turns out that the hyperplane produced by our method does, in
fact, separate quite well using this criteria?.

We first applied our method to each of the 8 subgroups of Table III to identify
its ‘state of separability’. Group 1 is the only group which is not separable, all
other groups are strongly separable. The separability status of the unions of some
individual subgroups was also noted.

Using the first 100 distinct points of group 1 as a training set, we found them to
be non-separable. Using the Branch and Bound method of Section 5, we obtained a
hyperplane which minimized the width of the ambiguous strip of those 100 points.
Using the remaining database as the test set, we attained an accuracy of 93.967%.
This is reported in the top row of Table IV.

We (rather arbitrarily) selected various other combinations of subgroups to act
as the training set, and others as the test set. The results of these tests are tabulated
in Table IV.

For example, we used the 1990 data (of sets 3, 4, and 5) to predict the nature of
the 1991 data (given by sets 6, 7, and 8) and found that the accuracy of prediction
was 97.58% (row 3 of Table IV). Various other combinations are displayed in Table
IV.

Note that the number of LP’s required to solve the problems was as high as
195 – this is not surprising as groups 2 through 8 form a non-separable set and the
problem is non-convex.

All of the above tests were performed with the GAUSS program running on a
486 Versa NEC docking station with 20 megabytes of memory and a 340 MB hard
disk drive.

? It might be noted that a recent paper addresses this very objective function [18], and describres
a heuristic method for the solution of the resulting non-convex program.
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More testing (including comparative testing) should clearly take place, with
other data and in tandem with other methods. However, the above results indicate
that the models addressed in this paper are producing accuracies which are quite
reasonable.

8. Summary

We began the paper by writing down an optimization problem whose solution
would produce the separating hyperplane associated with a dead zone of maximal
width when A and B are separable, and a separating hyperplane associated with
an ambiguous region of minimal width when A and B are not separable. It turns
out that the appropriate optimization model is exactly the same in any case, but the
nature of the problem is quite different:

A and B are separable () the appropriate model is a convex

program

A and B are not separable () the appropriate model is a non-convex

program.

A geometric interpretation of the models was offered in terms of the level sets of
the objective function of the model.

In any case, the models had been previously posed by a number of authors.
In the strongly separable case, we pointed out that a previously suggested

‘heuristic’ cutting plane method is, in fact, guaranteed to converge. But we were
able to improve convergence of the method by addressing the optimality conditions
and attempting to satisfy them on the way to optimality.

In the non-separable case, we introduced a Branch and Bound method to globally
solve the non-convex program.

Finally, we offered some computational evidence that
� the computational enhancement for convergence in the strongly separable case

is useful,
� the solution of the model in the non-separable case is do-able (albeit with the

high computational expense normally associated with Branch and Bound), and
� in either case, the models were able to forecast with a reasonable accuracy on

a real-world data set.
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